Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 282: 127640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350171

RESUMO

Antimicrobial peptides (AMPs) show promise as alternatives to traditional antibiotics for treating drug-resistant infections. Their adaptability and diverse sequence possibilities allow for rational design by modulating physicochemical determinants to achieve desired biological properties, transforming them into peptides for potential new therapies. Nisin, one of the best-studied AMPs, is believed to have potential to be used as a therapeutic, particularly against antibiotic-resistant bacteria. However, its instability in physiological conditions limits its use in clinical applications and pharmaceutical development. Exploration of new natural variants of nisin has uncovered diverse properties using different domains. Shuffling peptide modules can fine-tune the chemical properties of these molecules, potentially enhancing stability while maintaining or improving antimicrobial activity. In this study, hybrid AMPs were created by combining domains from three unique nisin variants, i.e. nisin A, cesin and rombocin, leading to the identification of a promising variant, named cerocin A, which harbours only 25 amino acids compared to the typical 31-35 amino acid length of nisin. Cerocin A demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), approaching that of nisin itself. Cerocin A's mode of action involves a dual mechanism through the combination of two domains, consisting of a small ring/domain (6 amino acids) from the C-terminal end of rombocin attached to the preceding peptide of cesin, changing it from a bacteriostatic to a bactericidal peptide. Further mutation studies identified a new variant, cerocin V, with significantly improved resistance against trypsin degradation, while maintaining high potency. Importantly, cerocin V showed no undesired toxic effects on human red blood cells and remained stable in human plasma. In conclusion, we demonstrate that peptide construction using domain engineering is an effective strategy for manipulating both biological and physicochemical aspects, leading to the creation of novel bioactive molecules with desired properties. These constructs are appealing candidates for further optimization and development as novel antibiotics.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Nisina , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/genética , Bacteriocinas/farmacologia , Nisina/genética , Nisina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Aminoácidos , Testes de Sensibilidade Microbiana
3.
Peptides ; 174: 171152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220092

RESUMO

Nisin serves as the prototype within the lantibiotic group of antimicrobial peptides, exhibiting a broad-spectrum inhibition against Gram-positive bacteria, including important food-borne pathogens and clinically relevant antibiotic-resistant strains. The gene-encoded nature of nisin allows for gene-based bioengineering, enabling the generation of novel derivatives. It has been demonstrated that nisin mutants can be produced with improved functional properties. Here, we particularly focus on the uncommon amino acid residues dehydroalanine (Dha) and dehydrobutyrin (Dhb), whose functions are not yet fully elucidated. Prior to this study, we developed a new expression system that utilizes the nisin modification machinery NisBTC to advance expression, resulting in enhanced peptide dehydration efficiency. Through this approach, we discovered that the dehydrated amino acid Dhb at position 18 in the peptide rombocin, a short variant of nisin, displayed four times higher activity compared to the non-dehydrated peptide against the strain Lactococcus lactis. Furthermore, we observed that in the peptides nisin and rombocin, the dehydrated amino acid Dha at residue positon 18 exhibited superior activity compared to the dehydrated amino acid Dhb. Upon purifying the wild-type nisin and its variant nisinG18/Dha to homogeneity, the minimum inhibitory concentration (MIC) indicated that the variant exhibited activity similar to that of wild-type nisin in inhibiting the growth of Bacillus cereus but showed twice the MIC values against the other four tested Gram-positive strains. Further stability tests demonstrated that the dehydrated peptide exhibited properties similar to wild-type nisin under different temperatures but displayed higher resistance to proteolytic enzymes compared to wild-type nisin.


Assuntos
Bacteriocinas , Lactococcus lactis , Nisina , Nisina/genética , Nisina/farmacologia , Aminoácidos/genética , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/química , Lactococcus lactis/metabolismo
4.
ACS Synth Biol ; 13(1): 370-383, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194633

RESUMO

Nisin, with its unique mode of action and potent antimicrobial activity, serves as a remarkable inspiration for the design of novel antibiotics. However, peptides possess inherent weaknesses, particularly their susceptibility to proteolytic degradation, such as by trypsin, which limits their broader applications. This led us to speculate that natural variants of nisin produced by underexplored bacterial species can potentially overcome these limitations. We carried out genome mining of two Romboutsia sedimentorum strains, RC001 and RC002, leading to the discovery of rombocin A, which is a 25 amino acid residue short nisin variant that is predicted to have only four macrocycles compared to the known 31-35 amino acids long nisin variants with five macrocycles. Using the nisin-controlled expression system, we heterologously expressed fully modified and functional rombocin A in Lactococcus lactis and demonstrated its selective antimicrobial activity against Listeria monocytogenes. Rombocin A uses a dual mode of action involving lipid II binding activity and dissipation of the membrane potential to kill target bacteria. Stability tests confirmed its high stability at different pH values, temperatures, and in particular, against enzymatic degradation. With its gene-encoded characteristic, rombocin A is amenable to bioengineering to generate novel derivatives. Further mutation studies led to the identification of rombocin K, a mutant with enhanced bioactivity against L. monocytogenes. Our findings suggest that rombocin A and its bioengineered variant, rombocin K, are promising candidates for development as food preservatives or antibiotics against L. monocytogenes.


Assuntos
Lactococcus lactis , Listeria monocytogenes , Nisina , Nisina/genética , Nisina/farmacologia , Nisina/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Antibacterianos/metabolismo , Mutação , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
5.
Microbiol Spectr ; : e0531922, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754751

RESUMO

Nisin is a widely used lantibiotic owing to its potent antimicrobial activity and its food-grade status. Its mode of action includes cell wall synthesis inhibition and pore formation, which are attributed to the lipid II binding and pore-forming domains, respectively. We discovered cesin, a short natural variant of nisin, produced by the psychrophilic anaerobe Clostridium estertheticum. Unlike other natural nisin variants, cesin lacks the two terminal macrocycles constituting the pore-forming domain. The current study aimed at heterologous expression and characterization of the antimicrobial activity and physicochemical properties of cesin. Following the successful heterologous expression of cesin in Lactococcus lactis, the lantibiotic demonstrated a broad and potent antimicrobial profile comparable to that of nisin. Determination of its mode of action using lipid II and lipoteichoic acid binding assays linked the potent antimicrobial activity to lipid II binding and electrostatic interactions with teichoic acids. Fluorescence microscopy showed that cesin lacks pore-forming ability in its natural form. Stability tests have shown the lantibiotic is highly stable at different pH values and temperature conditions, but that it can be degraded by trypsin. However, a bioengineered analog, cesin R15G, overcame the trypsin degradation, while keeping full antimicrobial activity. This study shows that cesin is a novel (small) nisin variant that efficiently kills target bacteria by inhibiting cell wall synthesis without pore formation. IMPORTANCE The current increase in antibiotic-resistant pathogens necessitates the discovery and application of novel antimicrobials. In this regard, we recently discovered cesin, which is a short natural variant of nisin produced by the psychrophilic Clostridium estertheticum. However, its suitability as an antimicrobial compound was in doubt due to its structural resemblance to nisin(1-22), a bioengineered short variant of nisin with low antimicrobial activity. Here, we show by heterologous expression, purification, and characterization that the potency of cesin is not only much higher than that of nisin(1-22), but that it is even comparable to the full-length nisin, despite lacking two C-terminal rings that are essential for nisin's activity. We show that cesin is a suitable scaffold for bioengineering to improve its applicability, such as resistance to trypsin. This study demonstrates the suitability of cesin for future application in food and/or for health as a potent and stable antimicrobial compound.

6.
J Biol Chem ; 299(7): 104845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209826

RESUMO

The increase in antibiotic resistance calls for accelerated molecular engineering strategies to diversify natural products for drug discovery. The incorporation of non-canonical amino acids (ncAAs) is an elegant strategy for this purpose, offering a diverse pool of building blocks to introduce desired properties into antimicrobial lanthipeptides. We here report an expression system using Lactococcus lactis as a host for non-canonical amino acid incorporation with high efficiency and yield. We show that incorporating the more hydrophobic analog ethionine (instead of methionine) into nisin improves its bioactivity against several Gram-positive strains we tested. New-to-nature variants were further created by click chemistry. By azidohomoalanine (Aha) incorporation and subsequent click chemistry, we obtained lipidated variants at different positions in nisin or in truncated nisin variants. Some of them show improved bioactivity and specificity against several pathogenic bacterial strains. These results highlight the ability of this methodology for lanthipeptide multi-site lipidation, to create new-to-nature antimicrobial products with diverse features, and extend the toolbox for (lanthi)peptide drug improvement and discovery.


Assuntos
Química Click , Lactococcus lactis , Metionina , Nisina , Aminoácidos/metabolismo , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Metionina/química , Metionina/metabolismo , Nisina/síntese química , Nisina/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
7.
Biotechnol Adv ; 39: 107465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31689470

RESUMO

ß-Galactosidases, an important class of glycosidases, naturally catalyze the hydrolysis of ß-galactosidic bonds in oligosaccharides and polysaccharides. Traditionally, these enzymes have been used to degrade lactose in dairy products, which are beneficial for lactose-intolerant people. Attractively, ß-galactosidases exhibit glycosyl transfer activity under certain conditions in vitro. They are capable of synthesizing carbohydrates from cheap starting substrates in a facile, efficient, and environment-friendly way. The condensation of lactose into the well-known prebiotic galacto-oligosaccharides by ß-galactosidases has become a key aspect of the industrial interest in the synthetic activity in recent years. At present, the transglycosylation activity of these enzymes has been greatly extended. It can be used not only in building glycan blocks of crucial glycoconjugates to elucidate their biological functions, but also in glycosylation of vital molecules, which have been applied in food, medicine and cosmetic industries to improve solubility, stability and bioactivity. Further molecular engineering of ß-galactosidases has significantly improved their synthetic activity, expanded the substrate spectrum and made them more powerful in carbohydrate synthesis. This review covers the classification, structure and mechanism of ß-galactosidases, galactosylation reactions catalyzed by these enzymes, and various strategies of enzyme engineering, with an emphasis on recent advances.


Assuntos
beta-Galactosidase/metabolismo , Galactose , Lactose , Oligossacarídeos , Prebióticos
8.
Appl Microbiol Biotechnol ; 104(2): 661-673, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31822984

RESUMO

We have recently derived a ß-N-acetylhexosaminidase, BbhI, from Bifidobacterium bifidum JCM 1254, which could regioselectively synthesize GlcNAcß1-3Galß1-4Glc with a yield of 44.9%. Here, directed evolution of BbhI by domain-targeted mutagenesis was carried out. Firstly, the GH20 domain was selected for random mutagenesis using MEGAWHOP method and a small library of 1300 clones was created. A total of 734 colonies with reduced hydrolytic activity were isolated, and three mutants with elevated transglycosylation yields, GlcNAcß1-3Galß1-4Glc yields of 68.5%, 74.7%, and 81.1%, respectively, were obtained. Subsequently, nineteen independent mutants were constructed according to all the mutation sites in these three mutants. After transglycosylation analysis, Asp714 and Trp773 were identified as key residues for improvement in transglycosylation ability and were chosen for the second round of directed evolution by site-saturation mutagenesis. Two most efficient mutants D714T and W773R that acted as trans-ß-N-acetylhexosaminidase were finally achieved. D714T with the substitution at the putative nucleophile assistant residue Asp714 by threonine showed high yield of 84.7% with unobserved hydrolysis towards transglycosylation product. W773R with arginine substitution at Trp773 residue locating at the entrance of catalytic cavity led to the yield up to 81.8%. The kcat/Km values of D714T and W773R for hydrolysis of pNP-ß-GlcNAc displayed drastic decreases. NMR investigation of protein-substrate interaction revealed an invariable mode of the catalytic cavity of D714T, W773R, and WT BbhI. The collective motions of protein model showed the mutations Thr714 and Arg773 exerted little effect on the dynamics of the inside but a large effect on the dynamics of the outside of catalytic cavity.


Assuntos
Bifidobacterium bifidum/enzimologia , Mutagênese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Bifidobacterium bifidum/genética , Evolução Molecular Direcionada , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , beta-N-Acetil-Hexosaminidases/química
9.
J Agric Food Chem ; 67(7): 2012-2019, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30678460

RESUMO

α-Amylases are among the most important and widely used industrial enzymes for starch processing. In this work, an α-amylase from Bacillus subtilis XL8 was purified and found to possess both hydrolysis and transglycosylation activities. The optimal pH and temperature for starch hydrolysis were pH 5.0 and 70 °C, respectively. The enzyme could degrade soluble starch into beneficial malto-oligosaccharides ranging from dimer to hexamer. More importantly, it was able to catalyze α-glycosyl transfer from the soluble starch to salidroside, a medicinal plant-derived component with broad pharmacological properties. The transglycosylation reaction catalyzed by the enzyme generated six derivatives in a total high yield of 73.4% when incubating with 100 mg/mL soluble starch and 50 mM salidroside (pH 7.5) at 50 °C for 2 h. These derivatives were identified as α-1,4-glucosyl, maltosyl, maltotriosyl, maltotetraosyl, maltopentaosyl, and maltohexaosyl salidrosides, respectively. They were novel promising compounds that might integrate the bioactive functions of malto-oligosaccharides and salidroside.


Assuntos
Glucosídeos/metabolismo , Fenóis/metabolismo , Amido/metabolismo , Bacillus subtilis/enzimologia , Glicosilação , Hidrólise , Maltose/metabolismo , Oligossacarídeos/metabolismo , alfa-Amilases/metabolismo
10.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678922

RESUMO

Gut bacteria provide a rich source of glycosidases that can recognize and/or hydrolyze glycans for nutrition. Interestingly, some glycosidases have also been found to catalyze transglycosylation reactions in vitro and thus can be used for oligosaccharide synthesis. In this work, six putative and one known exo-α-sialidase genes-three from Bacteroides fragilis NCTC9343, three from Clostridium perfringens ATCC 13124, and one known from Bifidobacterium bifidum JCM1254-were subjected to gene cloning and heterogeneous expression in Escherichia coli The recombinant enzymes were purified, characterized for substrate specificity, and screened for transglycosylation activity. A sialidase, named BfGH33C, from B. fragilis NCTC9343 was found to possess excellent transglycosylation activity for the synthesis of sialylated human milk oligosaccharide. The native BfGH33C was a homodimer with a molecular weight of 113.6 kDa. The Km and kcat values for 4-methylumbelliferyl N-acetyl-α-d-neuraminic acid and sialic acid dimer were determined to be 0.06 mM and 283.2 s-1, and 0.75 mM and 329.6 s-1, respectively. The enzyme was able to transfer sialyl from sialic acid dimer or oligomer to lactose with high efficiency and strict α2-6 regioselectivity. The influences of the initial substrate concentration, pH, temperature, and reaction time on transglycosylation were investigated in detail. Using 40 mM sialic acid dimer (or 40 mg/ml oligomer) and 1 M lactose (pH 6.5) at 50°C for 10 min, BfGH33C could specifically produce 6'-sialyllactose, a dominant sialylated human milk oligosaccharide, at a maximal conversion ratio above 20%. It provides a promising alternative to the current chemical and enzymatic methods for obtaining sialylated oligosaccharides.IMPORTANCE Sialylated human milk oligosaccharides are significantly beneficial to the neonate, as they play important roles in supporting resistance to pathogens, gut maturation, immune function, and brain and cognitive development. Therefore, access to the sialylated oligosaccharides has attracted increasing attention both for the study of saccharide functions and for the development of infant formulas that could mimic the nutritional value of human milk. Nevertheless, nine-carbon sialic acids are rather complicated for the traditional chemical modifications, which require multiple protection and deprotection steps to achieve a specific glycosidic bond. Here, the exo-α-sialidase BfGH33C synthesized 6'-sialyllactose in a simple step with high transglycosylation activity and strict regioselectivity. Additionally, it could utilize oligosialic acid, which was newly prepared in an easy, economical way to reduce the substrate cost, as a glycosyl donor. All the studies laid a foundation for the practical use of BfGH33C in large-scale synthesis of sialylated oligosaccharides in the future.


Assuntos
Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Lactose/análogos & derivados , Leite Humano/química , Neuraminidase/genética , Neuraminidase/metabolismo , Oligossacarídeos/metabolismo , Bifidobacterium bifidum/enzimologia , Bifidobacterium bifidum/genética , Clonagem Molecular , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Fórmulas Infantis , Lactose/biossíntese , Lactose/metabolismo , Modelos Moleculares , Peso Molecular , Neuraminidase/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência , Ácidos Siálicos/metabolismo , Especificidade por Substrato , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...